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Quantum to classical transition induced by
a classically small influence*
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We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically
kicked particles. The classical dynamics of particle 1 is almost unaffected in condition that its mass is much larger than
that of particle 2. Interestingly, such classically weak influence leads to the quantum to classical transition of the dynamical
behavior of particle 1. Namely, the quantum diffusion of this particle undergoes the transition from dynamical localization
to the classically chaotic diffusion with the decrease of the effective Planck constant h̄eff. The behind physics is due to the
growth of entanglement in the system. The classically very weak interaction leads to the exponential decay of purity in
condition that the classical dynamics of external degrees freedom is strongly chaotic.
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1. Introduction

Rich dynamical behavior in periodically-driven systems
has attracted extensive attention in recent years.[1–3] It is found
that periodical driving induces quantized transport,[4,5] topo-
logical phase transition,[6–8] and thermalization of quantum
dynamics,[9,10] just to name a few. Among these, the quantum
transport in momentum space is particularly important, as it
provides an insight on the mapping of transport phenomenon
from position to momentum space. As an example, the dy-
namical localization (DL) in momentum space[11–13] is an ana-
log of the Anderson localization in position space,[14] both
of which result from the disordered feature of the system.[15]

Nowadays, the transport phenomenon in momentum-space lat-
tice has been a fruitful subject in physics, where the intriguing
phenomena, such as topologically-protected quantum walk[16]

and exponentially-fast diffusion[17–21] have been reported.
Theoretical investigations have stimulated experimental

studies on the transport phenomenon in periodically-driven
quantum systems. Recently, the DL was observed in the
atom-optics experiments on the periodically-driven ultracold
atoms[22] and molecules.[23] Even more remarkable, experi-
mental advances in atom-optics have made it possible to ac-
tively tune the driven laser to be a quasiperiodic[24–26] or ran-
dom sequence,[27] and thus to investigate the diffusion behav-
ior in a controlled manner, e.g., the Anderson transition for the
quasiperiodical kicking systems, and the decoherence-induced
subdiffusion for the random kicking systems. These investiga-
tions greatly broaden our understanding on the exotic transport
phenomenon induced by quantum coherence.[28–30]

It is known that the unavoidable coupling between system
and environment destroys quantum coherence,[31] and conse-
quently leads to the appearance of the classically chaotic dif-
fusion from the underlying quantum dynamics.[32–41] Interest-
ingly, the influence from a single chaotic particle can effec-
tively produce the decoherence effects.[42–46] The quantum–
classical correspondence (QCC) which is induced by the in-
teraction with a few degrees of freedom[47–50] has been re-
cently observed in a ultracold atoms experiment.[51] In the past
decades, the influence of interatomic interactions on the quan-
tum diffusion has received considerable investigations.[52–54]

Rich diffusion behaviors, such as subdiffusion[55–61] and
exponentially-fast diffusion,[18,19,21] have been observed. This
topic regains attention as it is closely associated with the is-
sue of dynamical many-body localization,[62–65] since the sys-
tem of coupled periodically-kicking particles is an ideal sys-
tem to explore the diffusion behavior in discrete momentum-
space lattice.[66–69] At present, the fate of dynamical many-
body localization under the interaction of particles is still an
open question.[70]

Motivated by these studies, we investigate the quantum
diffusion in a system involving two-coupled particles. The
system is periodically driven by impulsive fields. We concen-
trate on both the classical and quantum dynamics of one parti-
cle (say particle 1) under the interaction with the other one (say
particle 2). Interestingly, the effects of particle 2 with mass
m on the classical diffusion of particle 1 with unity mass de-
crease as m decreases, and it is negligibly small when m ≪ 1.
The reason is that particle 2 of very small mass possesses little
energy to affect the classical motion of particle 1. More im-
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portantly, the classically vanishing small influence is able to
destroy the DL of particle 1. It even leads to the appearance
of classically chaotic diffusion in quantum dynamics when the
effective Planck constant h̄eff is small enough. To character-
ize the quantum entanglement, we numerically investigate the
purity of the quantum state. The issue we address here is the
sensitivity of entanglement to the classical chaoticity of the ex-
ternal degrees of freedom. We find that the time dependence of
purity exhibits the power law decay for the regular motion of
the classical dynamics of particle 2, and the exponential decay
for the chaotic motion.

The paper is organized as follows. In Section 2, we de-
scribe the system and show the QCC of particle 1 subjected
to the influence from a very small particle. In Section 3, we
give a purity description of quantum entanglement. Summary
is present in Section 4.

2. The quantum and classical diffusions
We consider two interacting particles which are trapped

in an infinitely square well and periodically kicked by optical
lattices. The Hamiltonian reads

H = H1 +H2 +HI , (1)

where Hi (i= 1,2) indicates the Hamiltonian of individual par-
ticles

Hi =
p2

i
2mi

+Vi cos(2klxi)∑
n

δ (t −nT )+V (xi) , (2)

with V (xi) being an infinite square well

V (xi) =

{
0, 0 < xi < L,
+∞, otherwise,

(3)

and the interaction Hamiltonian HI takes the form

HI = ε exp
[
−σ(x1 − x2)

2] . (4)

The variable pi is the momentum, xi is the coordinate, mi is
the mass of individual particles, kl denotes the wave number,
Vi is the amplitude of the kicking optical lattices with period
T , and L is the width of the infinite square well. We consider
the repulsive interaction for which the parameter σ is positive
and the coupling strength is controlled by ε .

It is useful to introduce a set of scaled dimensionless
units. Time is scaled by T , i.e., t ′ = t/T , which means that
t ′ denotes the number of kicks. The canonical coordinate
and momentum variables are redefined as x′i = 2klxi and p′i =
2klT pi/m1, which satisfy the commutation relation [x′i, p′i] =
ih̄eff, with the effective Planck constant h̄eff = 4h̄k2

l T/m1. The
masses of the two particles are rescalled by m1, thereby a di-
mensionless mass is m = m2/m1. The kicking strength in di-
mensionless units takes the form Ki =Vi4k2

l T 2/m1. For the in-
teraction term, the scaled coupling strength is ε = ε4k2

l T 2/m1,

and λ =σ/4k2
l . The dimensionless width of the infinite square

well has the expression L′ = 2klL, For clarity, from here on, we
omit the superscript of prime in these variables. After rescall-
ing, the dimensionless Hamiltonian ℋ = 4k2

l T 2/m1H is de-
scribed as

ℋ=ℋ1 +ℋ2 +ℋI , (5)

where the Hamiltonian for the first particle is

ℋ1 =
p2

1
2

+V (x1)+K1 cos(x1)∑
n

δ (t −n) , (6)

the Hamiltonian for the particle 2 is

ℋ2 =
p2

2
2m

+V (x2)+K1 cos(x2)∑
n

δ (t −n) , (7)

and that for the interaction term takes the form

ℋI = ε exp
[
−λ (x1 − x2)

2] . (8)

In this system, the mass of particle 1 is unity and that of par-
ticle 2 is a dimensionless quantity m = m2/m1 which can be
adjusted by modifying m1 and m2. This opens the opportunity
for investigating the dynamics of particle 1 under the influence
of particle 2 with tunable mass.

We concentrate on both the classical and quantum dy-
namics of particle 1. Numerically, we use the split-operator
method to simulate the time evolution of the quantum dy-
namics. The initial state is a product state of the ground
state of each particle, i.e., ψ(0) = φ1(0)φ2(0) with φi(0) =√

2/Lsin(πxi/L). The classical evolution of a trajectory is ad-
dressed by the fourth order Runge–Kutta Method. The initial
condition of a trajectory (p1,x1, p2,x2) is such that the mo-
mentum of each particle is zero, p1 = p2 = 0, the coordinates
x1 and x2 are uniformly distributed in the region [0,L].
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Fig. 1. Classical diffusion coefficient Dc of particle 1 versus m for
ε = 0.1 (triangles), 2 (squares), and 4 (circles). The dashed line (in
red) denotes the classical diffusion coefficient of unperturbed case, i.e.,
ε = 0. Inset: mean square of classical momentum of particle 1 versus
time for m = 0.001. Dashed line (in red) denotes the fitting function of
the form ⟨p2

1(t)⟩= Dct with Dc = 0.087. The parameters are K1 = 1.8,
K2 = 0, λ = 10, and L = π .
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The typical character of classically chaotic diffusion is the
linear growth of the mean energy with time, i.e., ⟨p2(t)⟩c =

Dct, where ⟨· · · ⟩c stands for the ensemble average over many
trajectories and Dc is usually termed as the classical diffusion
coefficient (CDC).[71–74] This phenomenon is traditionally re-
ferred as normal diffusion. Our numerical investigations show
that the mean energy of particle 1 linearly increases with time
⟨p2

1(t)⟩c = Dct if the kick strength is strong enough (see the
inset in Fig. 1). In our numerical simulations, the number of
the classical trajectories is 104 and the evolution over one pe-
riod is separated into 105 numbers of steps. In order to in-
vestigate the effects of particle 2 on the classical diffusion of
particle 1, we numerically calculate the CDC of this particle,
i.e., Dc = limtf→∞⟨p2

1(tf)⟩c/tf for different m. Here, tf is the
total time during which one may numerically track the time
evolution. In our numerical experiments, tf is on the scale of
several hundreds of kicking periods, which can ensure the high
precision of the numerical results due to the linear growth of
mean energy with time. Interestingly, with the decrease of m,
Dc decreases to the saturation level which almost equals with
the CDC of the unperturbed case (see Fig. 1 for ε = 2 and 4).
This demonstrates that the influence from particle 2 decreases
as m decreases and it is even negligible if m ≪ 1. For weak
coupling (e.g., ε = 0.1), the Dc of particle 1 has slight differ-
ence from that of the unperturbed case as m varies, since the
two particles have little effects on each other for very weak
coupling.

We numerically investigate the quantum diffusion of par-
ticle 1 when its classical counterpart is almost unaffected
which is ensured by the condition m ≪ 1. The quantum
mean energy ⟨p2

1(t)⟩q of this subsystem exhibits DL for large
h̄eff [e.g., h̄eff = 0.05 in Fig. 2(a)]. Interestingly, the quan-
tum diffusion of particle 1 undergoes the transition from DL
to classically-chaotic diffusion as h̄eff decreases. For small
enough h̄eff (e.g., for h̄eff = 0.01), the quantum diffusion is
in good agreement with its classical counterpart, which is a
clear evidence of QCC. At first glance, such QCC happening
for very small h̄eff is trivial. However, by comparing with the
quantum mean energy with ε = 0, one can find that the quan-
tum diffusion of the unperturbed case is eventually suppressed
by quantum coherence after long time evolution [see Fig. 2(a)
for h̄eff = 0.01]. Therefore, the interaction plays a key role
for the appearance of QCC. To reveal rich features of quan-
tum diffusion, we numerically investigate the probability den-
sity distribution in momentum space. Our numerical results
show that for large h̄eff [e.g., h̄eff = 0.05 in Fig. 2(b)], the wave
packet is exponentially localized in momentum space, which
is a feature of DL. For small enough h̄eff [e.g., h̄eff = 0.01 in
Fig. 2(b)], the momentum distribution is in a good agreement
with the Gaussian function, which is a signature of the ap-

pearance classically chaotic diffusion. The change from the
exponentially-localized profile of wavepackets to the Gaussian
form reveals the quantum to classical transition.
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Fig. 2. (a) Time dependence of the classical (red line) mean energy and
quantum mean energy (black lines) of particle 1. From top to bottom, black
solid lines correspond to h̄eff = 0.01, 0.02, 0.03, 0.04, and 0.05, respectively.
The parameters are K1 = 1.8, K2 = 0, m = 0.001, ε = 2, λ = 10, and L = π .
For comparison, the dashed line (in blue) denotes the quantum mean energy
of the unperturbed case, i.e., ε = 0 with K = 1.8 and h̄eff = 0.01. (b) Mo-
mentum distribution at the time t = 500 with h̄eff = 0.01 (blue curve) and
0.05 (black curve). Dash-dotted line (in red) indicates the fitting function
of the Gaussian form |ψ1(p)|2 ∝ e−p2/ζ . Dashed line (in red) denotes the
exponential fitting |ψ1(p)|2 ∝ e−|p|/ξ .

In chaotic situation, the motion of particle 2 of very small
mass behaves like random noise. It is known that external
noises can destroy quantum interference and thus leads to the
classically chaotic diffusion.[75–77] As a further step, we con-
sider the case that the kick strength contains random noises,
for which the Hamiltonian reads

H =
p2

2
+(K +δK)cos(x)∑

n
δ (t −n)+V (x) , (9)

where δK is random numbers uniformly distributed in the in-
terval [0,δ max

K ], and V (x) denotes an infinite square well. We
numerically investigate the quantum diffusion for different
δ max

K . In numerical simulations, we take the average of the
expectation value ⟨p2⟩ over 50 realizations of random δK to
reduce the fluctuations of the time dependence of the physi-
cal observable. Our numerical results show that for a specific
h̄eff the quantum diffusion exhibits the transition from DL to
the classically chaotic diffusion with the increase of δ max

K , as
shown in Fig. 3(a). Note that the strength of the random noise
is much smaller than that of the kick strength, i.e., δ max

K ≪ K,
thus the chaotic diffusion emerging from quantum dynamics
with δ max

K is in good consistence with the classically normal
diffusion of the unperturbed case. In the presence of random
noise, the quantum diffusion also undergoes the quantum to
classical transition with the decrease of h̄eff [see Fig. 3(b) for
δ max

K = 0.012]. The comparison of the quantum states be-
tween the random kicking system with δ max

K = 0.012 and the
two-particle system with m= 0.001 shows the good agreement
both for DL and chaotic diffusion, as shown in Fig. 3(c). It is
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therefore reasonable to believe that the influence from a small
particle resembles random noises on the system.
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Fig. 3. (a), (b) Time dependence of the mean energy. In (a), h̄eff = 0.01,
from top to bottom solid lines correspond to δ max

K = 0.012, 0.008,
0.005, and 0. In (b), δ max

K = 0.012, from top to bottom solid lines corre-
spond to h̄eff = 0.01, 0.02, 0.03, and 0.05. For comparison, red-dashed
lines denote the classical mean energy with δ max

K = 0. (c) Momentum
distribution at the time t = 500 with δ max

K = 0.012 for h̄eff = 0.01 and
0.05, respectively. The parameters are K = 1.8 and L = π . Black curves
denote the momentum distributions for the two-particle systems with
m = 0.001, K1 = 1.8, ε = 2, λ = 10, and L = π (same as in Fig. 1(b)).

We quantify the difference between quantum and diffu-
sion coefficients of particle 1 by using the ratio ℛ = Dq/Dc,
where the quantum diffusion coefficient is defined as Dq =

limtf→∞⟨p2
1(tf)⟩q/tf. In the ideal case, the DL (Dq = 0) and

QCC (Dq = Dc) correspond to ℛ = 0 and 1, respectively. In
numerical simulations, we evolve the system for 500 periods
to calculate both Dc and Dq, and thus obtain the value ℛ. Fig-
ure 4(a) shows the dependence of ℛ on h̄eff for various m. It
is seen that with increasing h̄eff, the ℛ exponentially decays as
ℛ ∝ e−α h̄eff from almost unity to the saturation level which is
around ℛ= 0.1. This clearly demonstrates the exponentially-
fast departure of the quantum dynamics from its classical limit.
Note that the saturation region of ℛ≈ 0.1 indicates the appear-
ance of DL. Due to the finite time evolution in numerical sim-
ulations, the value of Dq for DL is not exactly zero, which re-
sults in the saturation of ℛ≈ 0.1. Detailed observations show
that the decay rate α of ℛ increases with the decrease of m,
which reveals that the quantum dynamics of particle 1 is much
easier to deviate from its classical counterpart if the mass of
particle 2 gets smaller. This is due to the fact that the influence
from particle 2 on particle 1 decreases as m decreases.

Furthermore, we define the criteria of the appearance of
the classically chaotic diffusion and DL as ℛ = 0.9 and 0.1,

respectively. We numerically obtain the threshold values of
h̄eff corresponding to ℛ = 0.9 and 0.1, which are separately
termed as h̄c

eff and h̄d
eff. The dependence of h̄c

eff and h̄d
eff on m

is depicted in Fig. 4(b). One can find three different regions in
the parameter space (h̄,m). Blow the curve of h̄c

eff, there is the
zone of QCC for which the quantum system exhibits chaotic
diffusion. Above the curve h̄d

eff, the quantum system exhibits
the DL since h̄eff is so large that the the quantum coherence
is not destroyed by the interaction. There is a transition re-
gion between the classically chaotic diffusion zone and the DL
zone. Our numerical result is useful for guiding the investiga-
tion on the diffusion behavior in cold-atom experiments.
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Fig. 4. (a) The ratio ℛ versus h̄eff with m = 0.001 (triangles), 0.01 (circles),
and 1 (squares). Dashed lines (in red) denote the exponential fitting, i.e.,
ℛ ∝ e−α h̄eff . (b) Phase diagram of quantum diffusion as a function of h̄eff
and m, where circles and triangles indicate the threshold values of h̄c

eff and
h̄d

eff which correspond to the appearance of classically chaotic diffusion and
dynamical localization, respectively. The coupling strength is ε = 2. Other
parameters are the same as those in Fig. 2.

3. A purity description of entanglement
A commonly used measure of quantum entanglement is

purity 𝒫 = Tr(ρ2
1 ), where ρ1 is the reduced density matrix of

particle 1 by tracing out the degree of particle 2 from the den-
sity matrix of the two-particle system.[78,79] The sensitivity of
the quantum entanglement to external perturbations has been
extensively studied in the context of quantum chaos.[80–82] In
the present work, we numerically investigate the effects of the
classically chaotic dynamics of particle 2 on the generation
of quantum entanglement. We consider the case that the cou-
pling strength is in the form ε = ε̃ h̄eff, for which the coupling
is almost negligible in the semiclassical limit h̄eff ≪ 1. Our
numerical results show that for small K2, the purity decays in
the power law of time, i.e., 𝒫 ∝ t−η (see Fig. 5). For strong
kick strength (e.g. K2 = 0.09 and 0.12), the purity decays ex-
ponentially fast with time, i.e., 𝒫 ∝ exp(−γt). Moreover, the
time-dependence of purity is almost unchanged as long as the
K2 is sufficiently strong. Our numerical result demonstrates
that there is a regime where the exponentially-fast growth of
entanglement is stable provided that the chaoticity of the ex-
ternal degree of freedom is strong enough.
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Fig. 5. Purity 𝒫 versus time with K2 = 0 (circles), 0.03 (triangles),
0.05 (diamonds), 0.09 (pentagrams), and 0.12 (squares). Dashed lines
(in blue) denote the fitting function of the form 𝒫 ∝ t−η . Dashed-dotted
(in red) line indicates the exponential fitting 𝒫 ∝ exp(−γt). The param-
eters are K1 = 5, m = 0.01, h̄ = 10−4, ε = 20h̄eff, λ = 10, and L = π .

4. Summary
We numerically investigate the entanglement involving a

few degrees of freedom via two coupled particles. We show
that, the effect of particle 2 on the classical behavior of parti-
cle 1 decreases as its mass (m) decreases. Under the classically
weak perturbation (m ≪ 1), the quantum diffusion behavior
of particle 1 undergoes a transition from DL to chaotic dif-
fusion with the decrease of h̄eff. We numerically investigate
the difference between quantum and classical diffusions for a
wide regime of h̄eff and m, and find the exponential decay of
ℛ with h̄eff. By using this quantity, we define the boundary for
the appearance of DL and classically-chaotic diffusion. Nu-
merically, we obtain a “phase” diagram of the quantum diffu-
sion in the parameters space (h̄eff,m). The quantum to classi-
cal transition is accompanied by the growth of entanglement.
For the vanishingly small interaction ε ∝ h̄eff with h̄eff ≪ 1,
the time decay of purity is exponentially fast in condition that
the classical dynamics of particle 2 is strongly chaotic. Such
exponentially-fast entanglement is stable in the sense that the
time dependence of purity is almost unchanged as K2 varies.
Our investigation has important implication for the fundamen-
tal problem of the quantum to classical transition.
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